Structure Dynamics of Energized Biological Membranes estimated by Time-Resolved Neutron Small Angle Scattering TR-SANS

Thomas Nawroth1, Ronald Gebhardt1, Klaus Zwicker2, Joerg Holzinger3, Isabelle Grillo3, Roland May3

1) TU Muenchen, Physics Department, James-Franck-Str., D-85748 Garching, Germany
2) Zentrum Biologische Chemie ZBC, Universitaets-Klinikum, D-60596, Frankfurt/M, Germany
3) Institut Laue Langevin ILL, Large Scale Structure Group, Avenue des Martyrs, F-38042 Grenoble CEDEX, France

Biological membranes of energy metabolism in Mitochondria, Chloroplasts and micro-organisms perform their function by membrane-energization, which is the generation of an electrochemical proton potential difference across a membrane. This couples the energy of respiration, photosynthesis or ion transport to membrane proteins as ATP-synthase and Cytochrome-Oxidoreductases. Those processes can be studies with liposomes as model membranes.

Liposomes (small unilamellar vesicles SUV) with reconstituted ATP-synthase from Micrococcus luteus were prepared from DMPC-D$_{54}$ and matched by 85% D$_2$O, while protein-free SUV from protonated Phosphatidyl-Cholins (DMPC, DOePC, SbPC) were investigated in H$_2$O-buffer. The energized membrane state was estimated by TR-SANS of liposomes after a large pH-jump (delta-pH > 1). The pH-jump was achieved by two techniques: i) by rapid acid addition using a stopped flow device and ii) by flash photolysis of novel caged acids (caged proton, t-jump = 170 micro-s). The time resolved scattering was observed with 0.8 nm neutrons at the D22-beamline at ILL in 65-200 frames of logarithmic time resolution (>500 ms).

As a novel result we observed a change in lipid bilayer structure upon membrane energization (delta-pH > 0.5). The thickness of the hydrophobic core shrunk by 1 Angstroem while no swelling (liposome size change by water uptake) was observed in the choosen system (10% glycerol-buffer). Spectroscopic experiments with pH-indicator entrapped liposomes showed an increase of the proton permeability by an order, which is consistent with a transition of transient hydrogen bond chain (tHBC) pores of type-C to type-A. The experiments are currently extended to ATP-synthase-liposomes.